Doświadczenia z realizacji fundamentów palowych nowych obiektów infrastruktury energetycznej w Polsce

Budowa obiektów związanych z energetyką wymaga zastosowania różnego rodzaju rozwiązań geotechnicznych. Z uwagi na konieczność zapewnienia odpowiedniego poziomu bezpieczeństwa, trwałości, niezawodności i spełnienia restykcyjnych wymagań dotyczących maksymalnego osiadania oraz różnicy osiadania fundamentów, obiekty te są zazwyczaj posadowione na palach. Często jest również wymagane kompleksowe zabezpieczenie wykopów pod realizację obiektów głęboko posadowionych.

Główne obiekty, tj. kotłownie i pylony komunikacyjne kotłowni, są wysokie i cienkie. W przypadku obiektów o wysokości ponad 100 m maksymalne naprężenia w poziomie ich posadowienia wynoszą 500–1000 kPa, a w przypadku obiektów smukłych naprężenia krawędziowe mogą przekroczyć 1500 kPa. W tego rodzaju obiektach najczęściej jest stosowane posadowanie fundamentów na palach wiercanych CFA (ang. Continuous Flight Auger Piles) średnicy 630, 800 i 1000 mm, na palach wiercanych wielkośrednicowych bądź na ścianach szczelinowych. Pale CFA przenoszą na podłoże gruntowe znaczne obciążenia – nawet powyżej 4000 kN charakterystycznej siły pionowej przy średnicy pala 800 lub 1000 mm i odpowiedniej jego długości. Zazwyczaj są wykonywane maksymalnie do głębokości około 20 m poniżej poziomu platformy roboczej. Ściany szczelinowe stosuje się najczęściej jako element posadowania pośredniego obiektów smukłych. W takim przypadku ściany w układzie tzw. skrzyżowane są w stanie przenosić na podłoże gruntowe bardzo duże obciążenia pionowe i poziome.

Wykonywanie głębokich fundamentów z pali wiercanych bądź ścian szczelinowych wymaga użycia ciecznego specjalistycznego sprzętu budowlanego o znacznych gabariach. Często fundamenty tego rodzaju projektowanych są zlokalizowane w sąsiedztwie istniejących konstrukcji bądź instalacji, z ograniczonym dostępem i małą przestrzenią roboczą. W takim przypadku wykorzystuje się sprzęt o mniejszych wymiarach gabarytowych i wykonane zbrojone pale inekcyjne, nanoszone na podłoże gruntowe z użyciem jet grouting bądź mikropale. Podstawową zaletą tych pali jest ich wysoce naturalna, jak pali CFA, jest możliwość przenoszenia obciążenia na podłoże gruntowe bardzo dużych (ponad 1000 kN) obciążenia pionowych wciążających i wyciągających, przypodobnie do wietrzenia, jest jednak ograniczona. Mikropale średnicy do 250 mm zazwyczaj projektuje się do obciążeń nieprzekraczających 1000 kN, a wykonuje się je najczęściej w systemie samo- wiercącym DSL, GSI-Gonar, Titan, BBV bądź MESTI.

W przypadku fundamentów o obciążeniach 200–300 kPa bądź mniej, w zastosowań w wymaganiu dotyczących tego typu obiektów zazwyczaj wykonuje się wzmocnienie podłoża kolumnami DSM (ang. Deep Soil Mixing Column) lub kolumnami betonowymi wykonwanymi wśród izolowanych placów centralnymi CSC (ang. Controlled Stiffness Column) lub średnicy głównego groszku. Średnica kolumn DSM wynosi od 600 do 1600 mm, a kolumn betonowych – około 400 mm. Ogromnymi wpływami są w wykonywaniu tych elementów jest głębokość, tj. około 26 m od poziomu platformy roboczej.

Zabezpieczenia wykopów wykonuje się w postaci ścian szczelinowych, pali wiercanych bądź ścianek szczelinowych. W przypadku konieczności odcięcia dopływu wody gruntowej do mniejszych wykopów stosuje się wewnętrz obudow powyżej świadkowych lub ścian szczelinowych poziom przełączania przeciwpowietrzań jej groutinę, a w przypadku wykopów szeroko- przestrzennych – pionowe przewody przeciwpowietrzań zasilane do warstw gruntów lub przez ścianę szczelinową poziom przełączania przeciwpowietrzań jej groutinę. W przypadku uszczelnienia powyżej ścian szczelinowych, a materiał ograniczającym przepływ wody gruntowej jest stwardniał materiał w postaci betonu betonu, czyli groutinę. W przypadku pomieszczeniu poniżej poziomu platformy roboczej, ściany szczelinowe stosuje się najczęściej jako element posadowania pośredniego obiektów smukłych. W takim przypadku ściany w układzie tzw. skrzyżowane są w stanie przenosić na podłoże gruntowe bardzo duże obciążenia pionowe i poziome.

Przegląd posadowania pompowni ropy naftowej

Posadowanie obiektów o zróżnicowanych poziomie posadowienia, usytuowanym poniżej poziomu zwierciadła wód gruntowych i w złożonych warunkach gruntowych, wymaga często kompleksowych robót geotechnicznych. Przykładem takiego obiektu jest pompownia ropy naftowej (rys. 1), której o użyczu na wysokości poziom wód gruntowych i znaczącą mniej, sześć gruntów z poziomu obu poziomów posadowienia obiektu zaprojektowano pale CFA i ścianę szczelinową jako elementy posadowania pośredniego. Ściana szczelinowa stanowi dodatkowo obudowę głębszą z wykopów. Wokół obiektu – w odpowiedniej odległości od konstrukcji – wykonane pionowe przewody przeciwpowietrzań, dzięki czemu ściany szczelinowe, zasilane w warstwach złośliwych, przeciwpowietrzań gruntów organicznych (napalów), znacznie ograniczają dopływ wody gruntowej do wnętrza wykopu. Stężenie wody gruntowej zapewnił przypory przeciwpowietrzne. Po wykonaniu górnej płyty fundamentowej przystąpiono do realizacji wykopu pod płytą dolną. Wcześniej z poziomu terenu.
wykonano poziomą przestoną przeciwpłynną, a w wodorówniku osadzono wyrob listewkowy. W realizacji jednego obiektu zastosowano poziomą przestrzeń wodną (płynowe CFA, żelbetowe ściany szczelinowe, żelbetowe przegrody przeciwpłynne oraz prędy przeciwpłynne) w celu osiągnięcia poziomego przeciwpłynu o średnicy około 10 m i zalegających poniżej zwartych oraz połowie na podłoże wodnej.

Przykład posadzenia elektrowo węglowej

Posadzenie kotłowni elektrowo węglowej wymaga zazwyczaj pełenienia niemal wszystkich zarządzających stanu granicznego osadzenia płyty fundamentowej do 50 mm i różnica jej osadzenia między stopniami kota do 10 mm. Z uwagi na warunki gruntowne i obciążenia posadzono kotłownię na palaach wierceniowych CFA o średnicy 1000 mm (rys. 2).

Długość pali dostosowano do upadku stropu i grubości warstwy utworów kredowych reprezentowanych m.in. przez margle i piaskowce. Średnia wytrzymałość margli i margli ilastych przy szciskaniu osiowym $R_0 = 6.7$ MPa. Na podstawie prędkości krzywych zniszczenia w badaniach laboratoryjnych ustalono średnią wartość modułu odkładania $E = 390$ MPa. W przypadku piaskowców żałonych zewnętrznych o średniej wytrzymałości $R_0 = 2.3$ MPa określono $E = 70+270$ MPa. Pale są zatem bezpieczne w warstwie o stosunkowo wysokich modułach odkładania. Z uwagi na to, że spąg tych utworów układ się poziomo, bez znaczących upadków, zaprojektowano pale w zakresie długości od 10 do 16 m od poziomu posadowienia płyty fundamentowej kotłowni, aby wyrównać i maksymalnie zredukować osadzenie na głębokości około 20 m od poziomu posadowienia. W ten sposób większość części prognozowanego osadzenia realizuje się poniżej margli, w wodzie zagęszczonych, zawierających piasków glaukonitowych o miękkości około 10 m i zalegających poniżej zwartych oraz połowych na podłoże wodnej.

Przed przystąpieniem do realizacji palowania wykonano pale próbkowe (tzw. przedprodukcyjne) w celu potwierdzenia wstępnych założeń projektowych. Wykonanie próbnych obciążen pali na takim etapie inwestycji pozwala na optymalne i bezpieczne posadzenie odpowiedzialnego obiektu, jakim jest kotłownia elektrowo węglowa.

Po określaniu wstępnych układu pali oraz ich długości, wybrano pale do próbnych obciążen statycznych na wciskanie. Znalezione parametry próbnych obciążen pięciu pali przedprodukcyjnych oraz obciążeniowych dla dwóch sąsiadujących do osiągnięcia nośności granicznej, tj. przerzuczenia pionowego podłoża o ile nie jest warunkiem minimum 10% jego średniociegu lub do 200% maksymalnego charakterystycznego obciążenia pionowego, tj. do około 9000 kN. [1, 2, 3]

Przykłady wykresów krzywych Q-s przedstawiono na rys. 3. Zauważmy na grafikach, że w przypadku maksymalnego obciążenia charakteryzującego (około 4500 kN) biegły biegły pale przedprodukcyjne ich maksymalne osadzenie nie przekracza 10 mm, a w przypadku maksymalnego obciążenia obliczeniowego - 20 mm. W przypadku wykazywanej elektrowo nośność charakterystyczną pali na wciskanie określono na podstawie wyników badań trzech pali próbnych według [7].

Określone na podstawie próbnych obciążenia wartości obliczeniowej nośności pali potwierdziły słuszność wstępnych założeń projektowych. Wykorzystując krzywe Q-s i Q-n (rys. 4) skaliowano model numeryczny podłoża i na tej podstawie wykazano prognozę osadzenia całego obiektu. Analitykę przeprowadzono w programie Plaxis 2D. Model numeryczny MES (rys. 4) zawierał ponad 3000 elementów, złożonych z 15-węzłowych elementów skończonych. W odniesieniu do elementów strukturalnych (płyta i pale) wykorzystano model liniowo sprężystry, a do podłoża gruntowego - modele izotropowe wodzieniowe (HS - Hardening Soil) oraz izotropowe wodzieniowe, uwzględniające zakres małych odkładania (HSS - Hardening Soil with Small-Strain Stiffness) w odniesieniu do gęstej zalegającej warstwy ilów pory.

Rys. 3. Wykresy krzywych Q-s z badań próbnych pali przedprodukcyjnych i produkcyjnych dwóch sąsiadujących kotłowni

Po wykonaniu pale produkcyjnych przeprowadzono ich próbne obciążenia. Pale obciążono do 150% maksymalnego charakterystycznego obciążenia pionowego, tj. do około 6750 kN.

Przykład posadzenia żurawia wieżowego
do budowy kotłowni

Budowa kotłowni elektrowo węglowej wymaga wykorzystania żurawia wieżowego o wysokości podnoszenia nawet powyżej 200 m. Przykład posadzenia takiego żurawia przedstawiono na rys. 5. Ze względu na konieczność jego lokalizacji częściowo nad istniejącym fundamentem żelbetowym starego komina.
i wyciągających przypadających na pale. Dwutytoniki szerokościowe zapewniają – oprócz przeniesienia osiowych sił wyciskających i wyciągających – odpowiednią sztywność w płaszczyźnie poziomej, ograniczając przemieszczenia fundamentu i przenosząc siły ściskające i momenty zginające w palach.

Ze względu na włączenie istniejącego fundamentu żelbetowego do współpracy w przenoszeniu obciążen od zaru- wa na podłoże gruntyowe przeprowadzono analizy numeryczne w programie Plaxis 3D (rys. 6). Pale długości około 14 m od poziomu posadzenia, prze- chodzące przez warstwę nasypów glina- niastych i glin pylastych, zagłębiono na około 1,5 m w warstwie pospólk glinia- stych – uśredniony opór stożka qₜ przy sondowaniu statycznym CPT wyniósł w tej warstwie ponad 20 MPa. Dzięki temu ograniczono prognozowane maksymalne osiądanie krawędziowe funda- mentu do około 5 mm, przy uniesieniu przeciwległej krawędzi poniżej 1 mm. Maksymalną obliczeniową siłę wciągającą przypadającą na pojedynczy pal oszacowano na około 2000 kN, a wyciągającą na około 1000 kN.

Realizacja prac na terenach indu- strialnych wiąże się z dużym prawdo- podobieństwem napotkania podziem- nych przeszkód. Nieznawcę obecne stare fundamenty, pozostawione w po- dłożu płyty betonowe oraz inaczej usyu- tuowane niż w dokumentacji uzupełnienie terenu utrudniły tę realizację. Istnieją- cego fundament komina pełnił również dodatkowo funkcję czynnego schronu przeciwcłonniczego, tak więc przebijając się przez jego odsadzkę i wykonując pale jet grouting trzeba było stałe udzia- lać, aby nie uszkodzić szczelnych pomieszczeń schronu.

Pomimo wielu przeszkód występują- cych w podłożu gruntowym i kieczno- ści użycia dwóch maszyn specialistycz- nych na bardzo małym obszarze roboczym (rys. 7), prace geotechniczne zakończono w krótkim czasie.
Przykład posadowienia pylona komunikacyjnego kotłowni

Pylony komunikacyjne kotłowni (rys. 8) są obiektami o dużej śmukłości. Ich wysokość jest nieznacznie większa od wysokości kotłowni (ponad 100 m), przy wymiarach w rzucie wynoszących około 10 x 10 m. Pylony są zazwyczaj realizowane w pierwszej kolejności z wykorzystaniem desekowiących słizgowych, z postępem robót wynoszących nawet ponad 3 m na dobę.

Ze względu na sąsiedztwo kotłowni i innych obiektów elektrowni fundamenty pylonów mają wymiary zbliżone do wymiarów konstrukcji na nich spoczywających. Dominującymi obciążeniami są w szczególności: ciężar własny konstrukcji żelbetowej, oddziaływanie wiatru na obiekt oraz ewentualne obciążenia montażowe. Z uwagi na wymienione oddziaływania, przy niewielkich wymiarach fundamentów i restrykcyjnych wymaganiach dotyczących wartości dopuszczalnego osiadania i przecięcia stosuje się posadowienie posrednie pylonów. Najczęstszym rozwiązaniem jest posadowienie na ścianach szczelinowych tworzących w rzucie zamkniętą „skrzynię”. Wówczas uzupełnia się bardzo sztywny element posadowienia posredniego, znacząco ograniczający przemieszczenia pionowe i poziome konstrukcji w podłożu gruntowym.

Przykład zaprojektowanego i zrealizowanego w ten sposób obiektu przedstawiono na rys. 9. Pylon o wymiarach w rzucie 8,0 x 12,75 m i wysokości około 107 m jest posadowiony na płycie fundamentowej i ścianach szczelinowych grubości 1,0 m i długości 23,0 m od poziomu posadowienia. Zadaniem ścian szczelinowych jest ograniczenie maksymalnego osiadania pylonu do 15 mm.

W podłożu gruntowym występują głównie piaski drobne, średnie i grube z różnym stopniem zagęszczenia. W pałkach bardzo zagęszczonych piasków średnich występują wkladki węgli brunatnych o zróżnicowanej miąższości oraz stopniu cementacji. Wykonano badania jednoosiowego ściskania pobranych próbek węgla, uzyskując zróżnicowany stopień wytrzymałości skłały 0,2-13,7 MPa. Stwierdzono ponadto zróżnicowaną zawartość substancji organicznej, wynoszącą 25-32%. Na podstawie badania presjometrycznego E_A, badania edometrycznego M oraz z przełożenia modułu edometrycznego według wzoru korelacyjnego z wytrzymałością na ściskanie, wartość modułu śliskości M węgli oszacowano na 160 MPa, co odpowiada wartości modułu śliczności piasków średnich bardzo zagęszczonych.

Zgodnie z przeprowadzoną analizą posadowienia (rys. 10) wykazano spełnienie warunku maksymalnego dopuszczalnego osiadania.
na harmonogram robót, ale również na jakość i poprawność techniczną.

W przypadku tego rodzaju obiektów jest konieczne spełnienie wszystkich wymagań projektowych oraz zachowanie najwyższych standardów wykonawczych podczas całego procesu budowy, z jednoczesnym zachowaniem krótkich terminów realizacji. Harmonogram robót jest podporządkowany „kamieniu milowym” danego projektu, które są zazwyczaj wyznaczone przez terminy dostaw i montażu elementów wyposażenia, tj. kotłów, turbin itp. Podczas realizacji robót szczególnie istotne są kwestie bezpieczeństwa i higieny pracy. Roboty są zazwyczaj prowadzone na terenie zamkniętych zakładów przemysłowych mających własne procedury i wymagania z zakresu bhp.

Koordynacja złożonych robót geotechnicznych przez doświadczonego kierownika robót ułatwia odpowiednie ich etapowanie, z wczesną identyfikacją i uwzględnieniem zagrożeń wynikających z wprowadzanych na bieżąco korekt i zmian harmonogramowych. Duże znaczenie w prawidłowej realizacji ma dobór optymalnego sprzętu i doświadczenie kadry pracowniczej, np. w przypadku pali wiercących typu CFA klużowe znaczenie w przenoszeniu obciążeń na podłoże gruntowe ma zastosowanie palownicy odpowiedniej mocy, obsługiwanej przez doświadczonego operatora. Odpowiednie dobranie do danych warunków gruntowych sprzętu i prędkości wiercen zapobiega rozluźnieniu gruntu, a także umożliwia uzyskanie dużych nośności i sztywności pali. Właściwy dobór mieszanki betonowej oraz wibratora wspomagającego pogrążenie zbrojenia zapewnia skuteczną instalację koszy zbrojeniowych nawet do głębokości 15 m.

Waży stem elementem prawidłowej realizacji prac jest zapewnienie ścisłej współpracy jednostki projektowej z wykonawcą na budowę. Współprowadzalność projektanta i wykonawcy jest bezwzględnie wymagana w celu zapewnienia odpowiedniego poziomu bezpieczeństwa i niezawodności budowanych obiektów.

Kontrola jakości robót

Kontrola jakości robót geotechnicznych obejmuje proces wykonania robót specjalistycznych i roboty in towarzyszące. W przypadku prac palowych standardowej kontroli podlegają w szczególności: przygotowanie platformy roboczej, identyfikacja i kontrola kwalifikacji pracowników, weryfikacja dokumentów maszyn i sprzętu budowlanego, weryfikacja nośności i sztywności pali na podstawie próbnych obciążen pali przedprodukcyjnych, kontrola wytchnienia i lokalizacji pali, kontrola zbrojenia pali, monitoring procesu wykonania pali, badanie konsystencji i temperatury mieszanki betonowej, badanie wytrzymałości próbek betonu, weryfikacja nośności i sztywności pali na podstawie próbnych obciążen pali produkcyjnych, kontrola długości i ciągłości pali (badania metodami nieniszczycielskimi).

W przypadku pali do najbardziej istotnych badań należy zaliczyć próby obciążenia (zawarto pali przedprodukcyjnych, jak i produkcyjnych). W przypadku próbnych obciążen pali przedprodukcyjnych coraz częstszą praktyką jest wykonanie ich z pomiarem odkształceń wzdłuż trzonu pali. Tego rodzaju badania, prowadzone do osiągnięcia nośności granicznej pali, umożliwiają określenie zarówno nośności podstawy, jak i pobocznicy pali oraz wartości jednostkowego tarcia na pobocznicy i odporu pod podstawą [3]. Dysponując wynikami odkształceń wzdłuż trzonu pali podczas próbnych obciążen, na etapie opracowania projektu wykonawczego można zaprojektować najkorzystniejsze w danych warunkach gruntowych średnie i długość pali, zachowując przy tym wymagany normowo poziom bezpieczeństwa obiektów o szczególnym znaczeniu ekonomicznym i społecznym. Dodatkowo szczegółowa wiedza o pracy pojedynczego pali (rys. 11) umożliwia opracowanie skalibrowanych modeli geotechnicznych podłoża MES, które z dużą dokładnością odzwierciedlają odkształcenia projektowanych fundamentów.

Podsumowanie

Realizacja posiadania fundamentów obiektów infrastruktury energetycznej stawia inżynierom konstruktorom i geotechnikom bardzo wysokie wymagania, zarówno w aspekcie projektowania, jak i wykonawstwa. Do ich spełnienia jest niezbędna wiedza i doświadczenie oraz ścisma współpraca projektanta i wykonawcy podczas realizacji prac. Biorąc pod uwagę znaczenie obiektów infrastruktury energetycznej w Polsce, zastosowanie kontrolowych i bezpiecznych rozwiązań może zapewnić bezproblemową eksploatację wznoszonych obiektów.

PIŚMIENNICTWO I WYKORZYSTANE MATERIALY